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FULL WAVE CALCULATIONS OF 

THERMOSPHERIC NEUTRAL AIR MOTIONS 

H. Volland 

ABSTRACT 

Full wave calculations have been performed within the frequency range of 

gravity waves sec'2) for a thermospheric model between 120 

and 700 km altitude. In this altitude range gravity waves a re  coupled with heat 

conduction waves. Reflection, transmission, conversion and coupling from one 

wave type into the other one is described by the elements of the scattering 

matrix. The dependence of these elements on frequency and angle of incidence 

is discussed in full  detail. The transmission coefficients of gravity waves cal- 

culated by full  wave theory a re  compared with. simple ray calculations and show 

that ray treatment is an excellent approximation for obliquely upward propa- 

gating gravity waves and that gravity waves predominate throughout the thermo- 

sphere. The thermosphere reacts like a selective filter with respect to upward 

propagating gravity waves with optimal transmission at  kx - 2~ ( W  = angular 

5 w 5 

frequency; kx = horizontal wave number). Vertically downward propagating 

heat conduction waves are  mainly converted into upward reflected gravity waves 

(at higher frequencies) o r  mainly coupled into downward propagating gravity 

waves (at lower frequencies). 
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FULL WAVE CALCULATIONS OF 

THERMOSPHERIC NEUTRAL AIR MOTIONS 

1. Introduction 

Satellite drag measurements of the neutral a i r  density (Jacchia, 1959; 

Priester,  1959) have revealed for the first time that large scale diurnal varia- 

tions of the density in thermospheric heights between 150 and at least 1200 km 

altitude exist, thermally driven by EUV heating from the sun (Harris and 

Priester ,  1962). Hines (1960) put forward the hypothesis that free internal 

gravity waves of smaller periods generated within the lower atmosphere can 

propagate into the thermosphere. He suggested that travelling ionospheric dis- 

turbances observed within the F-region (see e.g., Heisler, 1967) are  the response 

of the ionospheric plasma to these neutral a i r  waves. Theoretical calculations 

especially those dealing with the ionospheric effect of the Russian H-bomb ex- 

plosion of October 30, 1961 (Kohl, 1964; Row, 1967; Hines, 1967a) show s u r -  

prising good agreement between the observed variations of the F-layer critical 

frequency at different stations and the theoretically expected dispersion effect 

of internal gravity waves depending on angle of incidence. Hines (1967a) could 

even explain the apparent period of the disturbance by a simple ray approach of 

the direction of energy propagation of gravity waves. 

Recently, radar backscatter measurements (Thome, 1964) and HF -Doppler- 

effect measurements (Georges, 1967) as well a s  neutral a i r  density observations 
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by pressure gauge measurements on board of Explorer 32 (Newton et al. 1968) 

have shown that wave like structure in the thermosphere reaches altitudes as 

high as 600 km. Hines (1967b) and Newton et  al. (1968) using a ray treatment ex- 
b' 

plained these waves again as free internal gravity waves propagating from the 

lower atmosphere up into the thermosphere. The most striking feature of these 

large altitude waves is the bending of the wave normals toward a horizontal 

direction with increasing altitude. In a ray treatment this bending is a dispersion 

effect due to energy dissipation of the waves [ Hines (1967b); Newton et al. (1968)l. 

From the work of Harris and Priester (1962) and of Pitteway and Hines (1963) 

it can be suggested that heat conductivity is of predominating influence for the 

energy dissipation of neutral air waves. It can be shown numerically that the 

coefficient of viscosity can be neglected as compared with heat conductivity in 

thermospheric heights below 600 km and within the frequency range of gravity 

waves (Volland, 1968). 

Under the influence of heat conduction, two different pairs of wave modes 

exist within the thermosphere: acoustic-gravity waves and heat conduction 

waves. They are coupled with each other at any height because their eigenvalues 

depend on the ratio 

- 
( K  = coefficient of heat conduction; P = mean pressure) 
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. 

which increases with height, and therefore the thermosphere behaves like an 

inhomogeneous medium. Heat conduction waves a r e  evanescent waves below 

about 200 km altitude. At higher altitudes, however, their attenuation rate i s  of 

the same order of magnitude as the attenuation rate of gravity waves. For these 

two reasons, the response of the thermosphere to the different wave modes in- 

cluding coupling and reflection processes must be determined by a full wave 

treatment, and a ray approximation has to be justified by these exact calculations. 

Full  wave calculations of neutral atmospheric waves in altitudes below 200 km 

have been performed by Midgley and Liehmon (1966). They calculated reflection 

coefficients of gravity waves and eliminated the evanescent heat conduction waves 

and viscosity waves by a special mathematical technique. 

As pointed out above, this technique, which i s  fully justified at  altitudes 

below 200 km, i s  not acceptable at greater heights because there heat conduction 

waves a r e  no longer of an evanescent type. 

This paper deals with a full wave treatment of neutral atmospheric waves at 

thermospheric heights taking into account heat conduction but neglecting viscosity, 

ion drag and Coriolis force. The negligence of the coefficient of viscosity is 

allowed at heights below 600 km and within the frequency range of gravity waves 

(w 5 10' * sec- ') .  The negligence of ion drag and Coriolis force is possible at 

frequencies 

3 



6 

where Q is the rotation period of the earth and v is  the collision frequency be- 

tween neutrals and ions. 

Our numerical calculations are extended to an altitude range of 120  5 Z 5 

< w < 

I 

700 km and a frequency range of 

these full wave calculations with simple ray approximation and shall mark the 

ranges of frequency, angle of incidence and wave type where a ray treatment is a 

sufficient approximation for neutral a i r  wave propagation. 

sec-'. We shall compare 

The mathematical background of f u l l  wave calculations is presented in 

Appendices A to E.  For an understanding of the numerical results given in 

Section 4 only the contents of Sections 2 and 3,  are necessary. 

, 

2. The Elements of the Scattering Matrix 

A s  shown in Appendix A to C two pairs of characteristic waves exist within 

the neutral thermosphere which we collect by a column matrix [see Equation (C-l)]  . I . 
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where a,, b, a re  ascending and descending gravity waves respectively, and aH , 

b, are ascending and descending heat conduction waves, respectively. 

Our model atmosphere consists of three regions (see Figure 1). The regions 

below 2, (region I) and above Z I , (region 111) a re  considered as homogeneous 

( G  = const) and isothermal ( T  = const) atmospheres extended infinitely into the 

half spaces. The region between Z, and Z,, (region 11) approximates part  of the 

real atmosphere. Its parameters approach the parameters of regions I and 111 

at the boundaries Z, and Z, ,, respectively. 

Coupling between the four characteristic waves then only occurs within 

region 11, while in regions I and 111 the waves a re  uncoupled with each other. 

The connection between the four waves at the lower boundary Z, with the four 

waves at the upper boundary Z,, of region II is given by Equation (D-6): 

We are mainly interested in  reflection and transmission coefficients of the 

different waves. These coefficients are the elements of the scattering matrix 

well known in electromagnetic wave propagation (see e.g., Volland, 1962). The 

scattering matrix connects the waves going into region I1 with the waves coming 

out of region 11: 

5 
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where we introduced - column matrices of ascending and descending waves: 

R1 and R1 I are (2 x 2) - reflection matrices, and T I  and T I  I are (2 x 2) - 

transmission matrices. We collect these last four matrices into a (4 x 4) scat- 

tering matrix: 

A simple algebraic transformation leads to relations between the submatrices of 

in Equation (2) and the submatrices of 

R1 = - P i 1  P, 

RI1 = P, p i 1  

T I  = P, - P, Pi' P, 

= p;' 

(5) 

where 

6 
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J 

The elements of 

to plane waves. It i s  e.g., 

completely describe the behavior of region II with respect 

where the elements 

are related to the reflection of gravity waves (G)  or  heat conduction waves (H) 

coming from below. 

are conversion coefficients transferring part of the incoming wave energy of one 

wave type into reflected wave energy of the other wave type. Equivalent relations 

hold for the other three submatrices R '  I ,  T' and T' I. 

Figure 1 shows the four elements of the first column of matrix S f '  [ Equa- 

tion (4)] which give the ratios between reflected and transmitted waves, respec- 

tively, and an incoming gravity wave from below. 

7 
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Twelve equivalent elements for the three other incoming waves exist but a r e  

only outlined in Figure 1. 

The elements ai and b i  have the dimension d z  
Therefore R .  R* and T. T* (a star indicates conjugate complex values) a r e  

measures of the reflected and transmitted wave energy per area.  But note the 

difficulties arising from an incomplete definition of energy in Appendix E.  

3. Atmospheric Model and Numerical Techniques 

For the model atmosphere in region I1 we chose the Harris-Priester 

model 5 at 12" local time (CIXA, 1965). The lower boundary of region I1 is 

Z ,  = 120 km. Below 2, an isothermal atmosphere with the temperature at the 

height 2 I is added as region I. The upper boundary 2, I serves as parameter 

running from Z, to 600 km. Region 111 then is an isothermal atmosphere with 

the temperature in the height Z I I .  For some calculations (results shown in 

Figure 7) a height Z, I = 700 km has been fixed and 2, was a parameter. 

Note that in order to make regions I and 111 homogeneous with respect to 

characteristic waves the coefficient of heat conductivity K in these regions must 

decrease exponentially with altitude like the pressure [see Equation (A-4)] . As 

will be seen later this is  not a serious limitation for the acceptance of that 

model because below 100 km heat conduction waves a re  purely evanescent waves 

(their wave amplitude is attenuated by a factor larger than e = 0.37 after 
1 
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. 

propagating 1 km in the vertical direction), and gravity wave propagation is only 

slightly influenced by heat conductivity. The region above 600 km otherwise has 

no influence on the reflection characteristics of gravity waves. 

Region II is approximated by a number of homogeneous isothermal slabs of 

K thickness AZ,, = 1 km. Again in each slab it i s  - = const. Repeated calculations 

with changing AZv 2 100 m did not show significant differences in the results 

and indicate that our model with slab thickness AZv = 1 km is a sufficient ap- 

proximation of a realistic atmosphere. 

P 

If one starts calculations at heights below 200 km where the attenuation rate 

of heat condition waves increases rapidly, one is confronted with a practical 

difficulty in numerical techniques. The elements of PI' I in Equation (1) can 

become very large in magnitude, and the elements of T'  in Equation (5) a r e  

differences of two large values. I:f these differences a re  smaller than the accu- 

racy of the computer, the numerical results of the elements of T I  become 

meaningless. In order to determine T '  under these circumstances one has to 

repeat the calculations starting from the top of region I1 and calculating down- 

ward. Then the e r ro r  of T' is small enough while now T" becomes meaningless 

below a certain altitude. 

4. Numerical Results 

In this section we shall give numerical results for the elements of the scat- 

tering matrix determined from Equations (D-6) and (5). 
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Figure 2 gives the magnitude of the four elements Gg , Hg, GTi  and HT2 

which describe reflection, conversion, transmission and coupling into heat con- 

duction waves of incoming gravity waves from below. The frequency used is 

G) = 
277 sec-' (equivalent to a period of t = - = 105 min), the horizontal wave 
w 

number used is kx = km-' (equivalent to a horizontal wavelength of 

2?l 
A x = - =  62 8 km) . 

k x  

The transmission coefficient GTE decreases in this altitude range by a 

factor of 170. The mean pressure decreases in the same height interval by a 

factor of 420. Therefore the amplitude ratio of the gravity wave between 120 and 

600 km is [see Equation (A-3)] 

IcTEI = 0 .25  

large enough to be detectable. 

The reflection coefficient GR: remains constant at altitudes above 250 km. 

Its value of 8 x 10' is equivalent to a reflected energy of 6.4 x of the 

incoming energy. The conversion coefficient tlRJ which converts part of the 

incoming gravity wave energy into reflected heat conduction wave energy, has 

the value 5 x 

stancy of the reflection factors indicates that the region above 250 km has no 

influence on the reflection characteristics of the atmosphere below 120 km. 

and remains constant above an altitude of 200 km. The con- 
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The coupling coefficient HTG' which i s  responsible for the transfer of energy 

from the gravity mode into heat conduction mode never exceeds 3% of the magni- 

tude of the transmission coefficient GTd. Therefore not more than l0ko of the 

gravity wave energy is coupled into heat conduction wave energy. 

In Figure 3 the transmission coefficient GTC' T,,, has been compared with 

the transmission coefficient T, derived from a simple r a y  approximation [ Equa- 

tion (D-7)]. Here magnitude (Figure 3a) and phase (Figure 3b) are  plotted 

versus height using the same frequency as in Figure 2 and two different values 

of kx . As seen in Figure 3 ray calculation (dashed lines) is an excellent approxi- 

mation in this range of frequency and horizontal number in heights above 200 km. 

The discrepancy between full wave and r ay  calculations at kx = 2.15 x km 

ar i ses  mainly in the height region below 200 km where the temperature gradient 

of the atmospheric model is largest. 

3 

Note that the thickness of the whole thermosphere in terms of the vertical 

wavelength of gravity waves is only of the order of one wavelength. 

In order to test the range of validity of the ray approximation the ratio between 
l a .  I 

the magnitudes of both transmission coefficients and the difference of their 

phase values in 600 km height have been plotted ve r sus  horizontal wave number 

kx in Figure 4a again for w = 

mean steep incidence of the waves. 

sec-'. Small horizontal wave numbers 
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In the range kx 2 luf’the ray approximation breaks down. This is the 

range of horizontal wavelengths where gravity waves are totally reflected within 

the lower atmosphere (see Figure 4b). In the range kx > l o m 3  km-3 maximum 

discrepancy occurs in the phase at kx = 2.15 x km”. But from Figure 3b 

we observe that this discrepancy already is generated within the height region 

Z < 200 km. Therefore a ray approximation is valid at this value of kx in heights 

z 2 200 km. 

In Figure 4b the magnitudes of the four elements GRd, & , cTd and HTd 

discussed in Figure 2 have been calculated for a region I1 range from 120 to 

600 km and are plotted versus horizontal wave number kx . In the range kx < 

2 x 

the difficulty in the definition of energy (see Appendix E). Therefore the elements 

a re  normalized according to Equation (E-8) in this region (dashed lines) and only 

give upper limits. 

km-’ the reflection coefficient I &  I becomes larger than 1 indicating 

There is a maximum in the magnitude of the transmission coefficient cTC‘ near 

k x  = 2 x km” showing that the atmosphere behaves like a selective trans- 

former depending on frequency and horizontal wave number. 

Otherwise the pressure amplitude t3f gravity waves at frequency w = 

10-3 sec-1 and horizontal wave numbers k > 1.5 x 10-2 km-1 has dropped to 

values < 10‘’ after travelling through region I1 from 120 to 600 km height and 

becomes difficult to detect. 

12 
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In the whole range of k x  the coupling coefficient HTG' is negligibly small 

compared with cTG'. The conversion coefficient Hg i s  also small. Gravity 

waves therefore predominate throughout the entire thermosphere, and heat con- 

duction waves a re  unimportant for the transport of wave energy within the 

thermosphere. 

Figures 5 and 6 calculated for the two angular frequencies w = sec" 

and w = lo-* sec-' give similar results to Figure 4. In Figure 5 we observe 

essentially the same behavior as in Figure 4 only shifted toward one smaller 

magnitude of kx . Now ray approximation is valid for horizontal wavenumbers 

kx > km-' 

in Figure 5a i s  again generated below Z = 200 km. Detectable wave amplitudes 

of gravity waves a re  expected to have wave numbers between 2 i 

2 x km-'. 

km-' , and the maximum discrepancy in phase at kx - 2 x 

2 kx < 

Figure 6 has been calculated for an angular frequency of w = 10" sec-' 

and a height region between 200 and 600 km because this frequency is strongly 

reflected below 200 km. Now there is no maximum in the transmission coeffi- 

cient ciTG' in Figure 6b because at this frequency the wave with index G behaves 

like a gravity wave at kx > lom2 km-' [ real  part of eigenvalue aC negative for 

upgoing waves (see Appendix B)] and behaves like acoustic wave at kx 

(ac positive for  upgoing wave). In the gravity wave range a ray approximation i s  

valid. Within the acoustic range the transmission coefficient GTGI i s  nearly 

lo -*  km-' 
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constant. Coupling into heat conduction waves again is  negligible within the whole 

range of kx at this frequency. 

Figure 7 (full lines) finally show reflection ( &I), transmission ( H T i l ) ,  

conversion ( & I )  and coupling ( ,Ti1) into gravity waves of downgoing heat con- 

duction waves at vertical incidence (k, = 0) and for two different frequencies 

( W  = l o m 3  sec-' in Figure 7a; w = 

star ts  now in 700 km, and the elements are calculated as functions of 2, and are 

plotted versus altitude. Here we note that some elements of the scattering 

matrix exceed the value one. This peculiar behavior has already been observed 

for ascending gravity waves at steep incidence and shows the incompleteness of 

sec-' in Figure 7b). The model region II 

the energy definition (see Appendix E) .  No attempt has been made however to 

normalize the numerical values in Figure 7 with the help of a condition equivalent 

to Equation (E -8). Therefore only the relative relations between the different 

elements can he discussed. We see from Figure 7a that in altitudes below 

500 km most of the energy of heat conduction waves of frequency LC) = 

has been converted into gravity waves the larger part reflected, the rest trans- 

mittsd into the lower regions. 

sec" 

Figure 7b shows the same data but for the smaller frequency w = l om4 sec". 

There below 600 km most of the energy is already converted and coupled into 

gravity waves. But now coupling predominates. Ray approximation, of course, 

becomes senseless under these conditicms because of the strong coupling effect. 

14  
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, 

Therefore the sta,sments in the paper of Volland (1967), which are based on ray 

approximation of vertically downward propagating heat conduction waves, must 

be modified. 

For comparison the transmission coefficient GT21 of downward propagating 

gravity waves i s  plotted as dashed lines in Figure 7 .  In Figure 7b this coefficient 

below 500 km is smaller by two orders of magnitudes than the coupling coeffi- 

cient GTHI1 . Therefore we expect from this result that the vertical downward 

transport of energy is mainly due to this coupling from heat conduction waves 

into gravity waves. 

Unfortunately i t  is  not possible at the present state to derive from Figure 7 

a quantitative value for the amount of energy transfer through the thermosphere. 

We only can find from Equation (A-3) an upper limit for the ratio between the 

amplitude of a gravity wave at 120 km and the amplitude of a heat conduction wave 

at 700 km taking 1 GTHI1 1 5 1 as 

which shows that these waves a r e  no longer detectable in 120 km altitude. 

5. Concluding Remarks 

Numerical full wave calculations have been performed within the frequency 

range of gravity waves w $ l o m m 2  sec") in thermospheric heights between 

120 and 700 km. In these heights coupling occurs between gravity waves and 

15 



heat conduction waves. These calculations have been compared with those for  

simple ray approximation. It has been shown that 

1. Ray treatment is an excellent approximation for obliquely upward 

propagating gravity waves at horizontal wave numbers kx 2 CJ. 

\ 

2. The rate of coupling from gravity wave energy into heat conduction 

energy is negligibly small for upward propagating gravity waves. 

Gravity waves therefore predominate the upward transport of wave 

energy within the thermosphere. 

3. The thermosphere reacts like a selective filter with respect to gravity 

wave. The range of optimal transmission is near kx - 2 w .  

4. At K = sec-l the energy of vertically downward propagating heat 

conduction waves is mainly converted into ascending gravity waves. A t  

w = 

downward propagating heat conduction waves is coupled into downward 

propagating gravity waves. 

sec-l however the larger part of the energy of vertically 

These calculations suffer from one uncertainty. This is the incomplete 

definition of the energy flux for the single waves resulting in reflection and 

transmission coefficients with magnitudes larger than 1, mhich happens at steep 

and vertical incidence. N o  way has been found to overcome this difficulty. 

16  
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APPENDIX A 

The Basic Equations 

Since we deal with gravity waves of periods < w < l o -*  sec-' at  

heights below 600 km we can neglect the coefficient of viscosity, ion drag and 

Coriolis force. We moreover consider only the simplest wave form, namely 

plane, nonducted, harmonic waves of angular frequency ic: propagating obliquely 

into a quiet horizontally stratified, isothermal atmosphere. The parameters of 

the atmosphere are only functiqns of altitude 2. The propagation plane shall be 

the (X - Z) -plane of a Cartesian coordinate system. 

method then leads to a system of first order differential equations (Volland, 1968) 

A strict perturbation 

de - =  jkKe 

where 

(A-1) 

17 
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A P  
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AU 

AP 

= wave amplitudes of 

20 

T 

= @ e *  

horizontal velocity 

vertical velocity 

pressure 

temperature 

density 

= time independent values of 

K coefficient of heat conductivity 

acoustic phase velocity 

pressure 

temperature 

. density 

=P 

c" 
y = - ratio of specific heats at constant pressure and constant volumn 
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normalized horizontal wavenumber kx s = -  
k 

- ( I  - $) 

-1 

1 

- 2 j A  

d l t -  ( 2 Y G )  

kx = horizontal wave number in X-direction considered as real  and constant 

w 
k = - wave number of acoustic waves C 

w = angular frequency considered as real and constant 

- 

C = y -  T acoustic phase velocity le- 
R = gas constant 

M = molecular weight 

19 
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Y g  - -  
- 2c 

Y g  
Wh = - 2v 

V = % heat conduction velocity 
=PP 

g = gravitational acceleration 

The wave amplitudes of horizontal velocity Au and of density A p  are linearly 

related with e2 and e3 and do not appear explicitly in system Equation (A-1). 

The ek are normalized in such a manner that their dimension i s  )/Energy/Area . 
Thus the amplitude increase of the wave within an adiabatic isothermal atmos- 

phere like 
z -- 

e 2H 
(A-2) 

R T  = - is the scale height) 
M g  (H 

is already compensated, and the squares of the normalized wave amplitudes e ~ e K ’  

are related to the energy flux of the wave. 

The ratio of the pressure amplitudes of the perturbation relative to the mean 

atmospheric pressure in two different heights Z, and Z,, i s  

20 

(A-3) 
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The same expressions hold for the other physical parameter. 

The height dependence of K in Equation (A-1) within an isothermal atmos- 

phere comes only through the parameter C (Z) because K = const, but 

= (A-4) 

Since we shall approximate the real  atmosphere by a number of homogeneous 

isothermal slabs we have to choose within one slab C = const. which implies 

.-Z/H 
P a K  - - K O  (A-5) 

21 



24 

APPENDIX B 

Characteristic Waves and Eigenvalues 

If the coefficient matrix K in Equation (A-1) is  constant we can define as- 

cending and descending characteristic waves by 

We call q i  the eigenvalue of the i-th characteristic wave. Within the isothermal 

atmosphere it is  

with 

(ab = Brunt-Vai &la-frequency) 

The plus sign inside the square root in Equation (B-2) is essociated with the pair 

of acoustic-gravity waves [an ascending one ( al) and a descending one (b,)] . 
The minus sign is associated with heat conduction waves (a2 ,  b2).* 

*For reasons of clarity we shall refer in Sections 2 to 4 to a l  -t aG b, - bci 

a2 -t aH b2 - 41 

22 



25 

The terms "ascending" and "descending" are related to the direction of 

energy propagation. Wave energy is dissipated by heat conduction, governed by 

the parameter C in Equation (B-2), which leads to complex eigenvalues 

From Equation (B-1) it follows then that wave energy of an upgoing wave [minus 

sign in Equation (B-l)] i s  dissipated if 

Pi > 0 (B-3) 

regardless of whether ai is positive or negative. al is negative for  the 

gravity mode. This is a distinctive mark for that wave type. Within a nondis- 

sipative atmosphere G -, a. Then acoustic-gravity waves become inattenuated 

(PI  = 0) while heat conduction waves become evanescent waves (,B2 - a). 

23 
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APPENDIX C 

The Transformation Matrix Q 

The transformation from the physical parameters ek in Equation (A-1) into 

the parameters of the single characteristic waves ai is defined by 

e = Q a  

where 

is the column matrix of the characteristic waves and Q can be found from the 

system of linear equations 

where Qi is the i-th column matrix of Q and E is the unit matrix. We obtain as 

elements of Q 

F: 

24 
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with 

I 2ys21 LIi  = qi - j A  1 - -  

L2i = y -  2A2 - 2 j A q i  

- L,i - y - S2 - A2 - qf 

Fi are  arbitrary normalization factors which can be taken e .g., as 

F, = 1. 

But note their significance in the WKB-approximation [see Equation (D-lo)] . 

Furthermore we  need the reciprocal Q-l of the matrix Q which has the 

elements: 

25 
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with 

1 

4 S2 A2 
Y-- Y 

A =  

26 
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APPENDIX D 

Exact Solution of Equation (A-1) and Ray Approximation 

Within a homogeneous slab Equation (A-1) can be transformed with help of 

Equation (C-1) into 

d o  
dZ = j k N a  - 

with 

0 0 0 

- N = Q - l K Q  - 

0 0 9 2  

(D-2) 

Within the v-th slab of thickness AZv = Z, - Z U m l  Equation (D-1) has the solution 

which is equivalent to Equation (B-1). 

At the boundary between two slabs total pressure,  vertical velocity, tempera- 

ture and heat flux of the wave amplitude must be continuous (see Appendix E). 

This leads to (see Figure D-1) 

27 
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with 

CU 

0 

0 

0 

0 0 

(D-5) 

The general solution of Equation (A-1) for wave propagation within an atmosphere 

composed of n homogeneous slabs is then: 

with 

If the parameters of two adjacent slabs only slightly differ from each other then 

and the approximate ray solution of Equation (D-6) is 

where now k (2) qi (Z) are  considered as continuous functions of altitude. The 

physical parameters of the i-th characteristic wave according to Equation (C -1) a r e  

28 
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The approximation Equation (D- 7) becomes optimal if one normalizes the elements 

of Q in such a manner that 

\: * a *  

contains only zeros within the diagonal. 

This condition leads to a unique determination of the factor Fi in Equa- 

tion (C-3): 

with 

j C .  - Y 
2 . Di - LSi - - -  

(D-10) 

Equation (D-8) with the normalization condition Equation (D-9) is known as WKB- 

approximation. 
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APPENDIX E 

Energy Flux 

The equation of conservation of energy neglecting viscosity can be written 

as (see e.g., Volland, 1967) 

P 
2 E = - ~2 (kinetic energy) 

U = c v p T  (internal energy) 

x = - p  g ( Z  - Z,) (potential energy) 

Q = (external energy source) 

(component of energy flux vector s in m-direction) 

Zo i s  the height of an arbitrary reference level of potential energy. Its sig- 

nificance is not quite clear, and we set x = 0. The kinetic energy E i s  of third 

order and can be neglected. 

If there is no external energy source ( Q  = 0) as we assumed throughout this 

paper then the vertical component S, must b;? continuous at any level. This im- 

plies pressure p, temperature T ,  vertical velocity V, and vertical heat flux 

- K az to be continuous at any boundary. 
a T  

30 
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The effective energy flux of the i-th characteristic wave is given by the time 

average of Sm: 

(The star indicates complex conjugate values.) The vertical time averaged heat 

flux is canceled out because 

in Equation (A-1) and 

- 
e k = 0 .  

Unfortunately the direction Be of energy flux derived from Equation (E-3) 

S [ ( y -  2 A 2  - 2 A , B i ) 2  -t 4 A 2 a f ]  

ai ( y 2  - 4 A 2  S2)  
t g B ,  = (2) = 

i 

does not coincide with ray direction O r  derived by 

a ai Real {+[ 1 - 
j GB2 

2 + ~ 2 - Y + S 2 +  j~ 
t g e r  = --= as 

qi 2 

(E -4) 
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as long a s  K # 0. Only for G --t 

gravity waves: 

( K  = 0) do both directions become equal for  

( K  = 0 )  

We observe the same discrepancy as in electromagnetic wave propagation where 

the direction of the Poynting vector and the ray direction differ from each other 

within a dissipative plasma. (See e.g., Hines, 1951.) Equation (E-3) therefore 

is no definite measure of energy flux. Whether o r  not the neglect of potential 

energy is the reason for this discrepancy is not clear to us. 

In view of these difficulties we do not try to use Equation (E-3) for the de- 

termination of energy flux but simply consider the values ai a: calculated from 

solution Equation (D-6) as measure of energy flux of the different characteristic 

waves. 

If the amplitudes a i  are clearly related to wave energy flux then the magni- 

tudes of the elements of the scattering matrix [ see  Equation (4)] should be always 

smaller than 1. In the numerical results of Section 4 we shall find, especially 

at steep incidence, magnitudes of some reflection and transmission coefficients 

larger than 1. This indicates that our definition of energy flux i s  incomplete 

resulting from the difficulties outlined above. 
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From general energy considerations however we can give an upper limit 

for  the magnitude of the elements of the scattering matrix. Imagine that only a 

gravity wave penetrates into region I1 from below (see Figure 1). Then Equa- 

tion (3) leads to 

Since all waves a re  decoupled from each other in regions I and 111 and since 

energy leaving region I1 can not exceed energy penetrating region I1 then 

(E - 8 )  

where the equal sign in Equation (E-8) applies only in the case of a nondissipative 

atmosphere ( K  = 0). 

From Equation (E-8) and equivalent equations holding for the other 1 2  ele- 

ments we can normalize the R and T. This has been done partly in Figures 4 

and 5. 
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FIGURE CAPTIONS 

Figure 1. Elements of the scattering matrix. Reflection coefficients (R) and 

transmission coefficients (T) of upward (a) and downward (b) propagating 

gravity waves (C) and heat conduction waves (H) within the thermosphere. 

Figure 2. Magnitude of coefficients of reflection (,g), transmission ((;TE ), 

conversion ( H R Z )  and coupling ( HTE) into heat conduction waves of upward 

propagating gravity waves versus Z, I .  

Figure 3. Magnitude (Figure 3a) and phase (Figure 3b) of transmission coeffi- 

cients of upward propagating gravity waves calculated by full wave theory 

(full lines) and by ray approximation (dashed lines). 

Figure 4a. Ratio between transmission coefficients of upward propagating 

gravity waves calculated by full  wave theory (W) and ray theory (R) versus 

horizontal wave number kx. Range of thermospheric model: 120 to 600 km; 

angular frequency: w = sec- ' .  

Figure 4b. Magnitude of coefficients of reflection, transmission, conversion 

and coupling into heat conduction waves of upward propagating gravity waves 

versus horizontal wave number kx. Range of thermospheric model: 120  to 

600 km. Angular frequency: w = 

(for details see text). 

s ec - ' .  Dashed lines give upper limits 
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Figure 5. Same as text of Figure 4, but angular frequency: w = see- '. 

Figure 6. Same as text of Figure 4, but angular frequency: w = l o e 2  sec - ' ;  

range of thermospheric model 200 - 600 km. 

Figure 7.  Full lines: Magnitude of coefficients of reflection, transmission, 

conversion and coupling into gravity waves of vertically downward propa- 

gating heat conduction waves versus Z, . 

Dashed lines: Magnitude of transmission coefficients of vertically 

downward propagating gravity waves. 

Figure 7a. w = see- ' .  

Figure 7b. w = see- ' .  

Figure D-1. The homogeneous slab-model. 
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Figure 1. Elements of the scattering matrix. Reflection coefficients (R) and transmission co- 
eff icients (T) of upward (a) and downward (b) propagating gravity waves (G) and heat conduction 
waves (H) within the thermosphere. 
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Figure 3. Magnitude (Figure 30) and phase (Figure 3b) of  transrni ssion coefficients of upward 

propagating gravity waves calculated by full wave theory ( fu l l  l ines) and by ray approximation 

(dashed lines). 
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Figure 40. Ratio between transmission coefficients of upward propagating gravity waves calcu- 

lated by full wave theory (W) and ray theory (R) versus horizontal wave number kx.  Range of 

thermospheric model: 120 to 600 km; angular frequency: w = sec". 
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Figure 4b. Magnitude o f  coefficients of reflection, ,transmission, conversion and coupling into 

heat conduction waves of upward propagating gravity waves versus horizontal w a v l  number kx.  
Range of  thermospheric model: 120 to  600 km. Angular frequency: w = sec". Dashed 
l ines give upper l imi ts (for details see text). 
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Figure 5a. Same as text of Figure 4, but angular frequency: w = lom4 sec”. 
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Figure 5b. Same as text of Figure 4, but angular frequency: w = loa4 sec”. 
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Figure 60. Same as text of Figure 4, but angular frequency: w = los2 sec”; 

range of thermospheric model 200 - 600 km. 
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Figure 6b. Same as text of Figure 4, but angular frequency: GI = sec- ' ;  

range of thermospheric model 200 - 600 km. 
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Figure 70. Full lines: Magnitude of coefficients of reflection, transmission, conversion and 

coupling into gravity waves of vertically downward propagating heat conduction waves versus Z,. 
Magnitude of transmission coefficients of vertically downward propagating 

gravity waves. Angular frequency: w = l U 3  sec”. 

Dashed lines: 
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Figure 7b. F u l l  lines: Magnitude of coefficients of reflection, transmi ssion, conversion and 

coupling into gravity waves of vertically downward propagating heat conduction waves versus Z,. 
Magnitude of transmission coefficients of vertically downward propagating 

gravity waves. Angular frequency: w = 
Dashed lines: 

sec-'. 
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